The 2D Incompressible Boussinesq Equations
نویسنده
چکیده
منابع مشابه
An incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time ...
متن کاملGlobal well-posedness for a class of 2D Boussinesq systems with fractional dissipation
The incompressible Boussinesq equations not only have many applications in modeling fluids and geophysical fluids but also are mathematically important. The well-posedness and related problem on the Boussinesq equations have recently attracted considerable interest. This paper examines the global regularity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal d...
متن کاملRegularity Criteria for the 2d Boussinesq Equations with Supercritical Dissipation∗
This paper focuses on the 2D incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ= √−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding problem. This paper prese...
متن کاملGlobal Well-posedness for the 2d Boussinesq System without Heat Diffusion and with Either Anisotropic Viscosity or Inviscid Voigt-α Regularization
We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work improves the global well-posedness results established recently by R. Danchin and M. Paicu for the Boussinesq system with anisotropic viscosity and zero diffusion. Although we follow some of their...
متن کاملNonlinear Maximum Principles for Dissipative Linear Nonlocal Operators and Applications
We obtain a family of nonlinear maximum principles for linear dissipative nonlocal operators, that are general, robust, and versatile. We use these nonlinear bounds to provide transparent proofs of global regularity for critical SQG and critical d-dimensional Burgers equations. In addition we give applications of the nonlinear maximum principle to the global regularity of a slightly dissipative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012